

NCPR DB INOX / NCPRI DB INOX

ELECTRODOS CONDUCTIVOS CON AMPLIFICADOR INCORPORADO

Aplicación Control de nivel de aplicación general para líquidos conductores de utilización preferente en depósitos también conductores (vea otras posibilidades en la página 5).

Principio de El sensor utiliza el propio tapón roscado como electrodo de referencia y las varillas para detectar

Principio de funcionamiento

El sensor utiliza el propio tapón roscado como electrodo de referencia y las varillas para detectar el depósito del cual se desea controlar su nivel. La detección de dicho nivel provoca la reacción de un relé integrado en el propio cabezal del sensor.

Se puede incorporar una temporización para retrasar la detección en depósitos con agitadores o con turbulencias. Para facilitar la adaptación a las características de la instalación, se puede seleccionar el estado de los contactos de relé.

Modo de trabajo

Depende del número de electrodos:

- · Con 1 electrodo: Detección de un solo punto de nivel (amplificador KNPA). Ver página 2.
- · Con 2 electrodos: Detección de niveles máximo y mínimo (amplificador KNCA). Ver pág. 3.

Conexión a proceso	Brida DIN. DN25. Inox AISI316 (1.4401)
Electrodo	Inox AISI316 (1.4401). Varilla ø5 mm.
Longitud electrodo	1000 mm.
Tens./Int. en electrodos	5 V _{pp} / 4 mA (en cortocircuito)
Temperatura proceso	-20+70 °C. Para otras temperaturas, consultar.
Presión proceso	5 Kg/cm ²
Sensibilidad	Ajustable entre 1100 K Ω (1000 μ s10 μ s) (Ver tabla adjunta).
Recubrimiento	Los modelos con referencia NCPRI se suministran con recubrimiento protector de Poliolefina
electrodos	(PE) o PTFE para asegurar la detección en los puntos que se hayan establecido.
	Electrodo Longitud electrodo Tens./Int. en electrodos Temperatura proceso Presión proceso Sensibilidad Recubrimiento

_	Material y dimensiones	PBT. 64 x 95 x 110 mm
ezá	Protección caja	IP67
Cabezal	Temperatura	-20+50 °C
0	Prensaestopa	M20 x 1,5 (IP68)
	Tipo	Relé SPDT 6A/250VCA
<u>8</u>	Tiempo respuesta	· A la puesta en marcha: 800 ms
Salida		· A la detección del líquido: 500 ms
တ	Temporización	Ajustable entre 09 s. Configurable al detectar, al dejar de
		detectar o en cualquiera de ambas situaciones.

Rangos de sensibilidades

Sensibilidad	Al detectar (≤ kohm)	Sin detectar (≥ kohm)		
0	1	2		
1	6	12		
2	12	24		
3	17	34		
4	23	46		
5	28	56		
6	34	68		
7	39	78		
8	45	90		
9	50	100		

RI	EFERENCIA		CO	NEXIÓ	N A PROCE	so			TENSIÓN			ELECT	RODO		
								024	24 VCA						
NCPR	Sensor de nivel							048	48 VCA						
			Brida		Inox	D0.4	DNIOS	110	110125 VCA	1 E	1 Electrodos			4000	1000
		DB	DIN	ı	AISI316	P34	DN25	230	220240 VCA	2 E	2 Electrodos			1000	1000 mm
NCPRI	Sensor de nivel (electrodo recubierto)						(1.4401)	901	1570 VCC/CC			T	PTFE PE		
									902	60240 VCA/CC				FE	

NCPR DB INOX

1 Electrodo

Control 1 nivel

Puesta en marcha y ajuste

Antes de poner en marcha el sensor NCPR debe ser ajustado para un correcto funcionamiento. Los ajustes se pueden modificar siempre que sea necesario. Debe tener en cuenta que el comportamiento del equipo puede cambiar si mientras realiza los ajustes los electrodos están en contacto o no con el líquido.

Asegúrese de que el selector de opciones esté correctamente situado. Cada vez que se desplaza a una nueva opción, el led

emite dos destellos rápidos que le indican que se ha accedido a dicha opción.

Valores de fábrica

Ajuste de la sensibilidad

5

Al acceder a esta opción, el led

está ajustado, entre 0 y 9. Cada vez que se acciona el pulsador PROG se incrementa en 1 el valor de la sensibilidad, excepto cuando el valor es 9 que pasa a 0. Si se mantiene pulsado durante más de 3 segundos el valor de sensibilidad pasa a 0. Vea la tabla "Rangos de sensibilidades" de la página anterior para relacionar cada dígito con su valor óhmico.

Estado de los contactos del relé

(Relé NA (____): led @ apagado; Relé NC (__t_): led @ encendido). Al acceder a esta opción el led @ muestra el estado actual del ajuste. Cada vez que se acciona el pulsador PROG se cambia el estado de los contactos del relé.

ATENCIÓN: Esta opción modifica de estado del relé, por lo que podria provocar efectos no deseados en el caso de que tenga algún dispositivo conectado a los contactos del relé.

Tipo de temporización

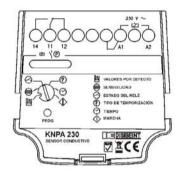
(Al detectar (\nearrow): led P apagado; Al dejar de detectar (\nearrow): led P encendido; Al detectar y al dejar de detectar (\nearrow): led P intermitente). Al acceder a esta opción, el led P se muestra el estado actual del ajuste. Cada vez que se acciona el pulsador PROG se cambia al siguiente tipo de temporización, cíclicamente.

Tiempo

1s

Al acceder a esta opción, el led

emite tantos destellos como el número de segundos a los que está ajustado el temporizador, entre 0 y 9 segundos. Cada vez que se acciona el pulsador PROG se incrementa en 1 segundo el tiempo ajustado, excepto cuando el valor es 9 que pasa a 0. Si se mantiene pulsado durante más de 3 segundos el valor del tiempo pasa a 0.


Marcha

Posición normal de trabajo.

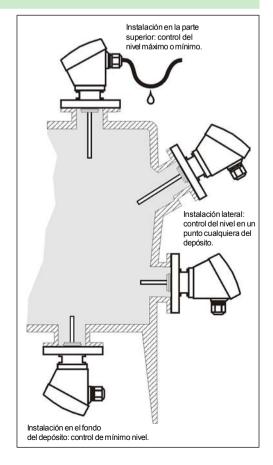
El estado del led

coincide con el estado del contacto (led encendido = relé activado).

Condiciones de montaje

<u>Electrodos</u>: La brida ejerce la función de electrodo común. Esto debe tenerse especialmente en cuenta en el caso de montaje en manguitos de material no conductor o cuando se instala en el fondo del depósito.

El electrodo principal puede cortarse para alcanzar la altura de detección de nivel adecuada. Durante el proceso de corte, tenga precaución en preservar el cabezal de esfuerzos mecánicos que puedan perjudicar la unión del electrodo con el circuito electrónico.


<u>Posición de montaje</u>: El sensor puede montarse en cualquier posición. Recuerde las consideraciones anteriores respecto al electrodo común.

<u>Depósito metálico o conductor</u>: Al instalar el sensor a un depósito conductor se debe asegurar la conductividad eléctrica entre ambos. Pueden emplearse selladoras de cobre, aluminio, etc. No es recomendable emplear cinta de teflón.

<u>Depósito no conductor</u>: En caso de instalar este sensor en depósitos no conductores, recuerde que medirá la conductividad existente entre el electrodo principal y la brida.

<u>Manipulación</u>: No se debe usar la caja de conexiones para sujetar el sensor mientras lo instala, sino que debe sujetarse por la brida. Una vez haya colocado los tornillos que sujetan la brida, puede girar 350° el cabezal con la mano hasta situarlo en la posición adecuada.

<u>Cable eléctrico</u>: Utilice un cable adecuado para la carga que soportará el relé. Es conveniente que el presaestopa cierre al completo sobre el cable de conexión eléctrica, y resulta imprescindible en el supuesto de existir humedad ambiental o estar instalado al aire libre. En estos casos, hacer un bucle en el cable que facilite la eliminación de las gotas acumuladas (ver figura).

NCPR DB INOX

2 Electrodos

Control de nivel Máximo/Mínimo

Puesta en marcha y ajuste

Antes de poner en marcha el sensor NCPR debe ser ajustado para un correcto funcionamiento. Los ajustes se pueden modificar siempre que sea necesario. Debe tener en cuenta que el comportamiento del equipo puede cambiar si mientras realiza los ajustes los electrodos están en contacto o no con el líquido.

Asegúrese de que el selector de opciones esté correctamente situado. Cada vez que se desplaza a una nueva opción, el led

emite dos destellos rápidos que le indican que se ha accedido a dicha opción.

Valores de fábrica

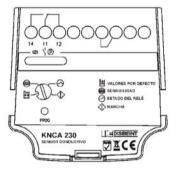
Ajuste de la sensibilidad

5

Al acceder a esta opción, el led

está ajustado, entre 0 y 9. Cada vez que se acciona el pulsador PROG se incrementa en 1 el valor de la sensibilidad, excepto cuando el valor es 9 que pasa a 0. Si se mantiene pulsado durante más de 3 segundos el valor de sensibilidad pasa a 0. Vea la tabla "Rangos de sensibilidades" de la primera página para relacionar cada dígito con su valor óhmico.

Estado de los contactos del relé



(Relé NA (____): led <code>P</code> apagado; Relé NC (____): led <code>P</code> encendido). Al acceder a esta opción el led <code>P</code> muestra el estado actual del ajuste. Cada vez que se acciona el pulsador PROG se cambia el estado de los contactos del relé.

ATENCIÓN: Esta opción modifica de estado del relé, por lo que podria provocar efectos no deseados en el caso de que tenga algún dispositivo conectado a los contactos del relé. Posición normal de trabajo.

Marcha

Condiciones de montaje

Electrodos: La brida ejerce la función de electrodo común.

Los electrodos de máximo y mínimo nivel pueden cortarse para alcanzar la altura de detección de nivel adecuada. No es necesario identificar el electrodo de máximo o de mínimo nivel puesto que el controlador KNCA los determina automáticamente según su altura.

Durante el proceso de corte, tenga precaución en preservar el cabezal de esfuerzos mecánicos que puedan perjudicar la unión del electrodo con el circuito electrónico.

<u>Posición de montaje</u>: Preferentemente monte el sensor en posición vertical. Si se instala en el lateral del depósito, se recomienda hacerlo con un ángulo no superior a 45° respecto a la vertical así como utilizar una separador de electrodos para evitar el contacto entre ambos (consulte los accesorios en la página 5).

<u>Depósito metálico o conductor</u>: Al instalar el sensor a un depósito conductor se debe asegurar la conductividad eléctrica entre ambos. Pueden emplearse selladoras de cobre, aluminio, etc. No es recomendable emplear cinta de teflón.

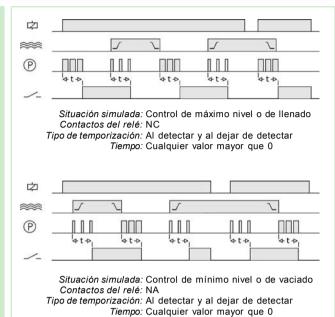
<u>Depósito no conductor</u>: No es recomendable instalar este sensor en depósitos no conductores. En caso de hacerlo, recuerde que el sensor medirá la conductividad existente entre los electrodos y la brida.

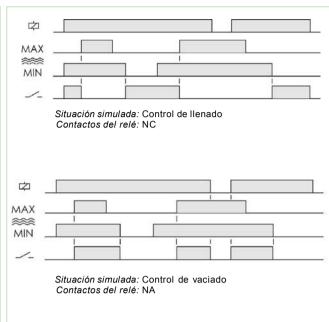
<u>Manipulación</u>: No se debe usar la caja de conexiones para sujetar el sensor, hágalo por la brida. Una vez haya colocado la abrazadera que sujeta la brida, puede girar 350° el cabezal con la mano hasta situarlo en la posición adecuada.

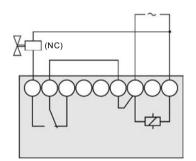
<u>Cable eléctrico</u>: Utilice un cable adecuado para la carga que soportará el relé. Es conveniente que el presaestopa cierre al completo sobre el cable de conexión eléctrica, y resulta imprescindible en el supuesto de existir humedad ambiental o estar instalado al aire libre. En estos casos, hacer un bucle en el cable que facilite la eliminación de las gotas acumuladas (ver figura).

Modelo

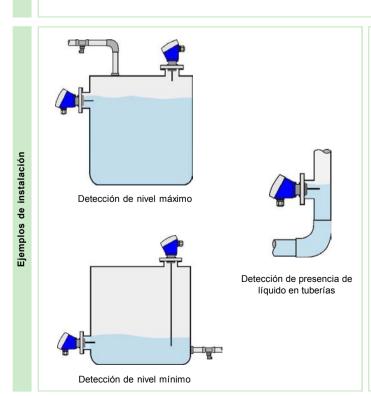
Diagramas de funcionamiento

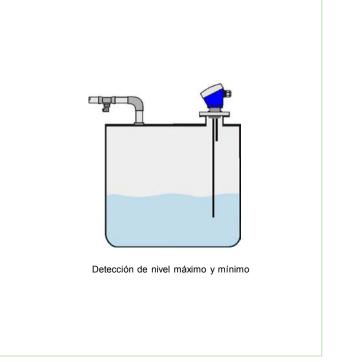

NCPR DB INOX 1E NCPRI DB INOX 1E

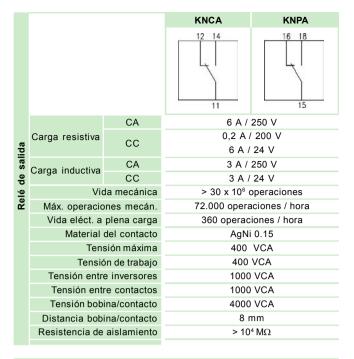

- · 1 Electrodo
- · Amplificador KNPA


NCPR DB INOX 2E NCPRI DB INOX 2E

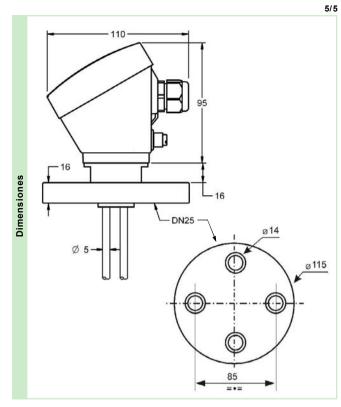
- · 2 Electrodos
- · Amplificador KNCA






Control de máximo nivel
o de llenado usando un
sensor con 1 electrodo y
el controlador KNPA.

Control de llenado usando un sensor con 2 electrodos y el controlador KNCA.



T				
Tensión fase-neutro	300 V			
Categoría de sobretensión	III			
Tensión de choque	4 kV			
Grado de polución	2			
Clase de protección	IP 20			
Temp. almacenamiento	-50+85°C			
Temperatura trabajo	-20+50°C			
Humedad	3085% HR			
Caja	Cycoloy - Gris claro			
Base	Lexan - Gris claro			
Visor leds	Lexan - Transparente			
Botones y bornes	Technyl - Azul oscuro			
Terminales borne	Latón niquelado			
Normas	Diseñado y fabricado			
	bajo normativa CEE.			
	Directiva de compatibilidad			
	electromagnética 2004/108/CEE.			
	Directiva de baja tensión			
	2006/95/CEE.			
	Plásticos: UL 91 V0			
	Categoría de sobretensión Tensión de choque Grado de polución Clase de protección Temp. almacenamiento Temperatura trabajo Humedad Caja Base Visor leds Botones y bornes Terminales borne			

		KNCA / KNPA			
		CA	CA/CC		
Tensión de alimentación		A1 A2 N	~ +		
	Aislamiento galvánico	Sí	Sí		
	Frecuencia	50 / 60 Hz	-		
ē	Márgenes de trabajo	±1015%	-		
	Positivo	-	Terminal A1		
	Polaridad protegida	-	Sí		

		PTFE	Poliolefina PE			
Recubrimiento	Aplicación	Protección de los electrodos contra eventuales contactos entre ellos.				
	Color	Blanco	Gris			
	Diámetro resultante (aprox.)	7 mm	6 mm			
	Temperatura	+140°C	+70°C			
	Modelos	NCVRI DBT	NCVRI DBL			

	NR.SEP/P	NR.SEP/T
		319
Aplicación	Separador d	e electrodos
Material	PVC	PTFE
Color	Rojo	Blanco
Diámetro del electrodo	5 r	nm
	Material Color	Aplicación Separador d Material PVC Color Rojo

E08032-Barcelona

Rev. 02/00 · 13/02/12 · DISIBEINT se reserva el derecho de alterar las especificaciones de este documento sin previo aviso