

IMN RPA INOX

LEVEL MAGNETIC SWITCH

neral	Operating principle	The IMN level magnetic sensors are based on the action of a reed switch located inside the tube, which activated by a magnet housed inside the float and moves due to the thrust of the liquid.					
Gen	Application	For the detection of one or more points in liquid level. Used in maneuvers for filling, emptying, overflow alarm, etc.					
	Manufacturing	Are customized to suit the installation conditions.					

Electrical connectio	By cable. Length 1 m. Others lengths over command				
Material	PVC	SILICONE			
Operating Temperature (°C)	130				
Nº maximum to outputs	7	7			
Cable gland	PG 7. Nickel plated brass. IP 65				
Ø Electric hose	36,5 mm				
	Material Operating Temperature (°C) N° maximum to outputs Cable gland	Material PVC Operating Temperature (°C) 70 N° maximum to outputs Cable gland PG 7. Nickel pla			

Body	Guide tube and last stops	SS AISI316 (1.4401). Ø12 mm
	Length	901000 mm
	Temperature	-40+125 °C
	Mounting position	Bent in 90° elbow

	Thread	3/8" G	1/2" G	3/4" G
Ξ	Material	SS	AISI316 (1.4	401)
connection	E (mm)		16	,
e	LR (mm)	3	30	14
Ē	LCP (mm)	1	5	11
္ပ	⊏ e/c (mm)	24	25	27
Process				

	Model	FCI602M13	FEI601M13			
	Material	SS AISI316L (1.4404)				
	Dimension (mm)	Ø 44x63	Ø 52x52			
	Pressure (kg/cm²)	15	30			
ate	Density (g/cm³)	e > 0,75	e > 0,76			
Floats	FS/FH (mm)	15,8 / 47,2	12,5 / 39,5			
ш	-턁급					

cts	Nr of contacts	13
ţąc	Class	NO: 120 WVA / 250 VAC-3A
o		NC-NO/NC: 60 WVA / 230 VAC-1A
ၓ	Distance between them	> 40 mm

Protection	
Insulated	Fill with epoxy resin

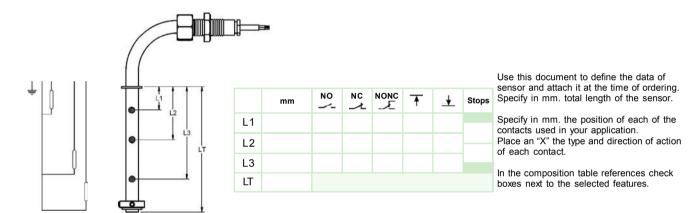
How to determine the sensor settings

Determine the total length according to the characteristics of the shell and the liquid level to be controlled.

According to the maneuver you wish to perform, determine the amount, location and type of contacts. Use the table below to define these characteristics.

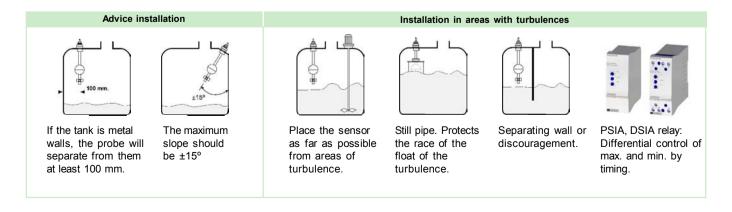
Contacts: To set the type of contact (NO, NC, NONC) should be without the presence of the float. For example, if you want the lower end of the sensor contact opens when the tank runs out of fluid, seek an NC contact for the position.

Direction of action (\uparrow \downarrow): Set the direction of action of the float (the filling or emptying) allows more precise adjustment of the position of the contacts to the point of desired performance.


<u>Electrical connection</u>: If not otherwise specified explicitly, provide a common connection to all the contacts and an active connection for each of them, according to the diagram below.

Additional floats: The sensor comes equipped by default with a single float, the lower stop and if required, the upper stop. Can request as many additional floats as many contacts as necessary.

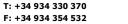
<u>Conditions of work</u>: Check that the conditions of pressure, temperature and density of your system match those offered by the model chosen. If you have questions regarding the behavior of materials in contact with the liquid you want to control, see chemical resistance chart on our website.

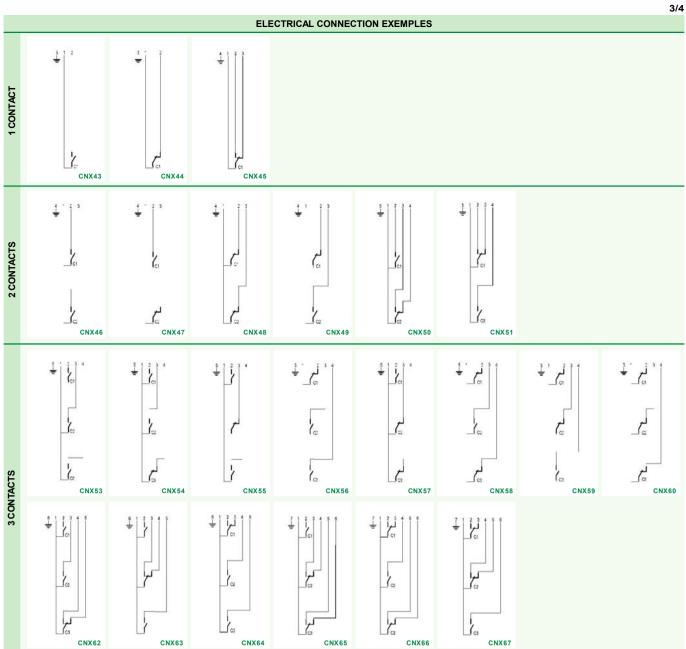

Apart from the possibilities listed here, there are others such as other floats, various electrical connections, etc..

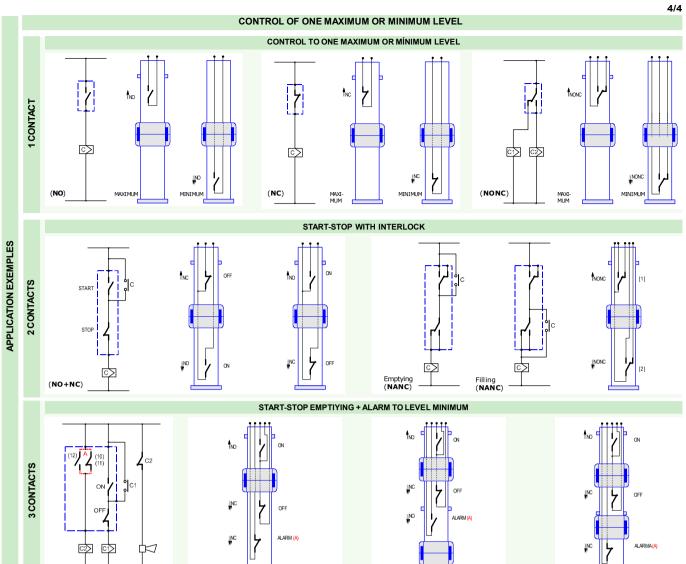
For other connectivity options and combination of floats and contacts, see our document "Connections for Switches Magnetic Level" you will find on the "Utilities / Tables" our website.

REFERENCE	P	ROCESS		FLOAT TOTAL LENG		TOTAL LENGTH	Nº CONTACTS		Nº FLOATS	
IMN RPA INOX	□ P 03 □ P 04 □ P 05	1/2" G	_	FCI602M13 FEI601M13	L	901000 mm	_	1 contact 2 contacts 3 contacts	□ N1	1 float 2 floats

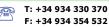
To compose a reference, select an option from each of the columns. Example: IMN RPA INOX P03 F14 L500 C1 N1




Basic electric connection



 $\label{thm:model} \textit{More information regarding, in "\it Utilities/Tables"} \ \textit{on our website (www.disibeint.com)}$



ALARM

SIRENA

