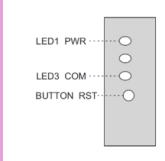

Description	
	SEM Three est un compteur de réseau triphasé à 4 quadrants qui surveille les paramètres d'énergie active, réactive et apparente, de puissance, de tension, de courant, de fréquence, de cos phi et plus encore; y compris les paramètres monophasés et triphasés. Il permet de travailler comme analyseur triphasé ou comme analyseur triple monophasé.
Caractéristiques en vedette	
	-Le plus petit compteur triphasé modulaire au monde
	-Configurez-le en compteur triphasé ou en triple compteur monophasé -Compteur de temps de fonctionnement pour surveiller les heures de travail des machines -Mesure d'énergie dans 4 quadrants
Données électriques	
Alimentation	110 264 VAC
Fréquence	47 63 Hz
Consommation	2,5 4,5 VA
Conditions environnementales	
Température	-10 +60 °C
Humidité	5% 95%
Données mécaniques	
Matériau d'entourage	Plastique auto-extinguible UL94-V0
Degré de protection	IP30
Dimensions	18 x 70 x 109 mm
Poids	Ŭ
Montage	rail DIN
Altitude maximale de travail	2000 m
Interface série	
Туре	RS-485 trois fils (A+/S GND/ B-) (RX/GND/TX)
Vitesse de transmission	9600 / 19200 bps configurable
Bits de données	-
Parité	
Bit d'arrêt	1 / 2 configurable
Caractéristiques et sécurité électriques	le
Couverture extérieure	CAT III 300 V selon EN 61010
Classe de protection	
Transformateurs de mesure externes	Séries TRA y TRC (In / 0,250 A)
Règlements	
	UNE EN 61010-1:2010, UNE-EN 61000-6-2, UNE-EN 61000-6-4

SKT8 - www.disibeint.com 1 / 5



Connexion électrique

Le SKT8 est alimenté entre les bornes L1 et N, et des transformateurs de courant externes sont nécessaires pour la mesure du courant. Ci-dessous le détail de chaque borne:

Leds

Installation

L'installation de l'équipement s'effectue sur un montage sur rail DIN, laissant toutes les connexions à l'intérieur d'un tableau électrique.

L'équipement doit être connecté à un circuit de puissance protégé par des fusibles de type gL (CEI 269) ou de type M, entre 0,5 et 2 A. Il doit être muni d'un interrupteur magnétothermique ou dispositif équivalent pour le déconnecter du réseau d'alimentation. Le circuit d'alimentation de l'équipement est relié par un câble d'une section minimum de 1 mm². La ligne secondaire du transformateur de courant aura une section minimale de 2,5 mm².

La température d'isolation des câbles connectés à l'équipement doit être d'au moins 62 °C.

Communication

L'équipement dispose d'un port de communication de type RS-485 pour la lecture et l'écriture des paramètres de l'appareil. Pour ce faire, l'équipement utilise le protocole de communication Modbus/RTU.

Par défaut, il est configuré avec le numéro de périphérique 72 (en décimal) et le mode de communication 4, c'est-à-dire 9600 bps, 8, N, 1. Au moyen de la commande de changement d'adresse, nous pouvons attribuer n'importe quelle autre adresse (maximum FF en hexadécimal équivalent au périphérique 25 Si vous ne vous souvenez pas du numéro d'esclave, vous pouvez récupérer l'adresse qui vient par défaut (72 décimal), pour cela vous devez:

- Couper l'alimentation auxiliaire de l'équipement.
- Activer en permanence le bouton situé à l'avant de l'équipement.
- Rallumez-le et arrêtez d'appuyer sur le bouton, ainsi l'équipement récupérera automatiquement le numéro de périphérique par défaut.

SKT8 - www.disibeint.com 2 / 5

Mode de fonctionnement

SKT8 a jusqu'à 4 modes de fonctionnement pour mesurer les paramètres électriques d'une installation. Pour changer le mode de travail actif, la valeur du registre Work Mode doit être modifiée entre les modes 0 (par défaut), 1, 2 et 3. Les détails de chacun d'entre eux sont indiqués ci-dessous:

- Mode 0: L1, L2 et L3 monophasé. Somme de toutes les valeurs mesurées en variables triphasiques.
- Mode 1: L2 et L3 monophasés. Triphasique équilibré L1. Somme de toutes les valeurs mesurées en variables triphasiques.
- Mode 2: L3 monophasé. Triphasique équilibré L1 et L2. Somme de toutes les valeurs mesurées en variables triphasiques.
- Mode 3: triphasique équilibré L1, L2 et L3. Somme de toutes les valeurs mesurées en variables triphasiques.

Comptage du temps d'exécution

Le module de comptage du temps de fonctionnement permet de compter la durée de dépassement d'une valeur seuil configurée significative pour tout type de mesure de temps lié à l'utilisation d'une machine, à l'efficacité d'un poste ou au temps de génération dans la journée.

SKT8 dispose de deux compteurs indépendants par phase et pour les valeurs triphasées, un compteur de temps de fonctionnement partiel (réinitialisable) et un compteur de temps de fonctionnement total, qui sera activé en fonction du paramètre configuré dans Paramètre pour Temps de fonctionnement, et une fois que la valeur Seuil pour Temps de fonctionnement aura été dépassée pendant plus de temps que celui configuré dans Temporisation de comptage pour Temps de fonctionnement.

La valeur à configurer dans Parameter for Run Time est affichée dans la colonne Symbol de la carte mémoire Modbus RTU. Par exemple, pour configurer la tension de phase, il faut écrire la valeur 1 dans le registre précité.

Carte mémoire Modbus RTU

Magnitude	Symbol	Registers	Unity	Function
Peripheral number	NPER	0x00	ID 72 (default)	3,6,16(0x10)
Communication parameters	сом	0x01	0: 9600, 8, E, 1 1: 19200, 8, E, 1 2: 9600, 8, N, 2 3: 19200, 8, N, 2 4: 9600, 8, N, 1 (default) 5: 19200, 8, N, 1	3,6,16(0x10)
Hardware version	HVER	0x07	,	3
Software version	SVER	0x08		3
Serial number	SERIAL	0x09-0x0A		3
Working mode	WRKM	0x0C	0: L1, L2, L3 (default) 1: L1(x3), L2, L3 2: L1(x3), L2(x3), L3 3: L1(x3), L2(x3), L3(x3)	3,6,16(0x10)
Current transformer XX/250mA phase 1	CT1	0x32	100 A (default)	3,6,16(0x10)
Current transformer XX/250mA phase 2	CT2	0xFA	100 A (default)	3,6,16(0x10)
Current transformer XX/250mA phase 3	CT3	0x1C2	100 A (default)	3,6,16(0x10)
Parameter for Operating time phase 1	OTVAR1	0x278		3,6,16(0x10)
Threshold for Operating time phase 1	OTVAL1	0x279-0x27A	V/mA/w/var/VA	3,6,16(0x10)
Delay on counting for Operating time phase 1	OTDLY1	0x27F	S	3,6,16(0x10)
Parameter for Operating time phase 2	OTVAR2	0x2DC		3,6,16(0x10)
Threshold for Operating time phase 2	OTVAL2	0x2DD-0x2DE	V/mA/w/var/VA	3,6,16(0x10)
Delay on counting for Operating time phase 2	OTDLY2	0x2E3	S	3,6,16(0x10)
Parameter for Operating time phase 3	OTVAR3	0x340		3,6,16(0x10)
Threshold for Operating time phase 3	OTVAL3	0x341-0x342	V/mA/w/var/VA	3,6,16(0x10)
Delay on counting for Operating time phase 3	OTDLY3	0x347	S	3,6,16(0x10)
Parameter for Operating time III	OTVART	0x3A4		3,6,16(0x10)
Threshold for Operating time III	OTVALT	0x3A5-0x3A6	V/mA/w/var/VA	3,6,16(0x10)
Delay on counting for Operating time III	OTDLYT	0x3AB	S	3,6,16(0x10)
Voltage phase 1	VI1 (1)*	0x02-0x03	V x 10	4
Current phase 1	Al1 (2)*	0x04-0x05	mA	4
Active power phase 1	APITOT1 (3)*	0x06-0x07	W	4
Reactive power phase 1	RPITOT1 (4)*	0x08-0x09	var	4
Apparent power phase 1	VAITOT1 (5)*	0x0A-0x0B	VA	4
Power factor phase 1	PFI1 (6)	0x0C-0x0D	x 1000	4
Maximum demand phase 1	MDI1 (7)*	0x0E-0x0F	W	4
Cos φ phase 1	COSI1 (8)*	0x26-0x27	x 1000	4
Frequency phase 1	FQI1 (9)*	0x28-0x29	Hz x 100	4
Active energy phase 1	AETOT1	0x3C-0x3D	Wh	4
Inductive reactive energy phase 1	IETOT1	0x3E-0x3F	varLh	4
Capacitive reactive energy phase 1	CETOT1	0x40-0x41	varCh	4
Apparent energy phase 1	VAETOT1	0x42-0x43	VAh	4
Active power consumed phase 1	API1 (10)*	0x258-0x259	w	4

SKT8 - www.disibeint.com 3 / 5

Inductive reactive power consumed phase 1	IPI1 (11)*	0x25A-0x25B	varL	4
Capacitive reactive power consumed phase 1	CPI1 (12)*	0x25C-0x25D	varC	4
Apparent power consumed phase 1	VAI1 (13)*	0x25E-0x25F	VA	4
Active power generated phase 1	NAPI1 (14)*	0x260-0x261	W	4
Inductive reactive power generated phase 1	NIPI1 (15)*	0x262-0x263	varL	4
Capacitive reactive power generated phase 1	NCPI1 (16)*	0x264-0x265	varC	4
Apparent power generated phase 1	NVAI1 (17)*	0x266-0x267	VA	4
Active energy consumed phase 1	AE1	0x268-0x269	wh	4
Inductive reactive energy consumed phase 1	IE1	0x26A-0x26B	varLh	4
Capacitive reactive energy consumed phase 1	CE1	0x26C-0x26D	varCh	4
Apparent energy consumed phase 1	VAE1	0x26E-0x26F	VAh	4
Active energy generated phase 1	NAE1	0x270-0x271	wh	4
Inductive reactive energy generated phase 1	NIE1	0x272-0x273	varLh	4
Capacitive reactive energy generated phase 1	NCE1	0x274-0x275	varCh	4
Apparent energy generated phase 1	NVAE1	0x276-0x277	VAh	4
Operating time partial counter phase 1	OTP1	0x27B-0x27C	S	4,6,16(0x10)
Operating time total counter phase 1	OTT1	0x27D-0x27E	S	4
Voltage phase 2	VI2 (1)*	0x66-0x67	V x 10	4
Current phase 2	AI2 (2)*	0x68-0x69	mA W	4
Active power phase 2	APITOT2 (3)*	0x6A-0x6B 0x6C-0x6D		4 4
Reactive power phase 2	RPITOT2 (4)*	0x6E-0x6F	var VA	4
Apparent power phase 2	VAITOT2 (5)* PFI2 (6)*	0x70-0x71	x 1000	4
Power factor phase 2 Maximum demand phase 2	MDI2 (7)*	0x72-0x73	W	4
Cos φ phase 2	COSI2 (8)*	0x8A-0x8B	x 1000	4
Frequency phase 2	FQI2 (9)*	0x8C-0x8D	Hz x 100	4
Active energy phase 2	AETOT2	0xA0-0xA1	Wh	4
Inductive reactive energy phase 2	IETOT2	0xA0-0xA1	varLh	4
Capacitive reactive energy phase 2	CETOT2	0xA4-0xA5	varCh	4
Apparent energy phase 2	VAETOT2	0xA6-0xA7	VAh	4
Active power consumed phase 2	API2 (10)*	0x2BC-0x2BD	W	4
Inductive reactive power consumed phase 2	IPI2 (11)*	0x2BE-0x2BF	varL	4
Capacitive reactive power consumed phase 2	CPI2 (12)*	0x2C0-0x2C1	varC	4
Apparent power consumed phase 2	VAI2 (13)*	0x2C2-0x2C3	VA	4
Active power generated phase 2	NAPI2 (14)*	0x2C4-0x2C5	W	4
Inductive reactive power generated phase 2	NIPI2 (15)*	0x2C6-0x2C7	varL	4
Capacitive reactive power generated phase 2	NCPI2 (16)*	0x2C8-0x2C9	varC	4
Apparent power generated phase 2	NVAI2 (17)*	0x2CA-0x2CB	VA	4
Active energy consumed phase 2	AE2	0x2CC-0x2CD	wh	4
Inductive reactive energy consumed phase 2	IE2	0x2CE-0x2CF	varLh	4
Capacitive reactive energy consumed phase 2	CE2	0x2D0-0x2D1	varCh	4
Apparent energy consumed phase 2	VAE2	0x2D2-0x2D3	VAh	4
Active energy generated phase 2	NAE2	0x2D4-0x2D5	wh	4
Inductive reactive energy generated phase 2	NIE2	0x2D6-0x2D7	varLh	4
Capacitive reactive energy generated phase 2	NCE2	0x2D8-0x2D9	varCh	4
Apparent energy generated phase 2	NVAE2	0x2DA-0x2DB	VAh	4
Operating time partial counter phase 2	OTP2	0x2DF-0x2E0	S	4,6,16(0x10)
Operating time total counter phase 2	OTT2	0x2E1-0x2E2	S	4
Voltage phase 3	VI3 (1)*	0xCA-0xCB	V x 10	4
Current phase 3	Al3 (2)*	0xCC-0xCD	mA	4
Active power phase 3	APITOT3 (3)*	0xCE-0xCF	W	4
Reactive power phase 3	RPITOT3 (4)*	0xD0-0xD1	var	4
Apparent power phase 3	VAITOT3 (5)*	0xD2-0xD3	VA	4
Power factor phase 3	PFI3 (6)*	0xD4-0xD5	x 1000	4
Maximum demand phase 3	MDI3 (7)*	0xD6-0xD7	W	4
Cos φ phase 3	COSI3 (8)*	0xEE-0xEF	x 1000	4
Frequency phase 3	FQI3 (9)*	0XF0-0xF1	Hz x 100	4
Active energy phase 3	AETOT3	0x104-0x105	Wh	4
Inductive reactive energy phase 3	IETOT3	0x106-0x107	varLh	4
Capacitive reactive energy phase 3	CETOT3	0x108-0x109	varCh	4

SKT8 - www.disibeint.com 4 / 5

Apparent energy phase 3	VAETOT3	0x10A-0x10B	VAh	4
Active power consumed phase 3	API3 (10)*	0x320-0x321	W	4
Inductive reactive power consumed phase 3	IPI3 (11)*	0x322-0x323	varL	4
Capacitive reactive power consumed phase 3	CPI3 (12)*	0x324-0x325	varC	4
Apparent power consumed phase 3	VAI3 (13)*	0x326-0x327	VA	4
Active power generated phase 3	NAPI3 (14)*	0x328-0x329	W	4
Inductive reactive power generated phase 3	NIPI3 (15)*	0x32A-0x32B	varL	4
Capacitive reactive power generated phase 3	NCPI3 (16)*	0x32C-0x32D	varC	4
Apparent power generated phase 3	NVAI3 (17)*	0x32E-0x32F	VA	4
Active energy consumed phase 3	AE3	0x330-0x331	wh	4
Inductive reactive energy consumed phase 3	IE3	0x332-0x333	varLh	4
Capacitive reactive energy consumed phase 3	CE3	0x334-0x335	varCh	4
Apparent energy consumed phase 3	VAE3	0x336-0x337	VAh	4
Active energy generated phase 3	NAE3	0x338-0x339	wh	4
Inductive reactive energy generated phase 3	NIE3	0x33A-0x33B	varLh	4
Capacitive reactive energy generated phase 3	NCE3	0x33C-0x33D	varCh	4
Apparent energy generated phase 3	NVAE3	0x33E-0x33F	VAh	4
Operating time partial counter phase 3	OTP3	0x343-0x344	S	4,6,16(0x10)
Operating time total counter phase 3	OTT3	0x345-0x346	S	4
Active power III	APITOTT (1)**	0x132-0x133	W	4
Reactive power III	RPITOTT (2)**	0x134-0x135	var	4
Apparent power III	VAITOTT (3)**	0x136-0x137	VA	4
Power factor III	PFIT (4)**	0x138-0x139	x 1000	4
Maximum demand III	MDIT (5)**	0x13A-0x13B	W	4
Cos φ III	COSIT	0x152-0x153	x 1000	4
Active energy III	AETOTT	0x168-0x169	Wh	4
Inductive reactive energy III	RETOTT	0x16A-0x16B	varLh	4
Capacitive reactive energy III	CETOTT	0x16C-0x16D	varCh	4
Apparent energy III	VAETOTT	0x16E-0x16F	VAh	4
Active power consumed III	APIT (6)**	0x384-0x385	W	4
Inductive reactive power consumed III	IPIT (7)**	0x386-0x387	varL	4
Capacitive reactive power consumed III	CPIT (8)**	0x388-0x389	varC	4
Apparent power consumed III	VAIT (9)**	0x38A-0x38B	VA	4
Active power generated III	NAPIT (10)**	0x38C-0x38D	W	4
Inductive reactive power generated III	NIPIT (11)**	0x38E-0x38F	varL	4
Capacitive reactive power generated III	NCPIT (12)**	0x390-0x391	varC	4
Apparent power generated III	NVAIT (13)**	0x392-0x393	VA	4
Active energy consumed III	AET	0x394-0x395	wh	4
Inductive reactive energy consumed III	IET	0x396-0x397	varLh	4
Capacitive reactive energy consumed III	CET	0x398-0x399	varCh	4
Apparent energy consumed III	VAET	0x39A-0x39B	VAh	4
Active energy generated III	NAET	0x39C-0x39D	wh	4
Inductive reactive energy generated III	NIET	0x39E-0x39F	varLh	4
Capacitive reactive energy generated III	NCET	0x3A0-0x3A1	varCh	4
Apparent energy generated III	NVAET	0x3A2-0x3A3	VAh	4
Operating time partial counter III	OTPT	0x3A7-0x3A8	S	4,6,16(0x10)
Operating time partial counter III	OTTT	0x3A9-0x3AA	S	4,0,10(0x10)
operating time total counter in	VIII	ONONO ONON	•	-

Operating time total counter III

*Only for parameters of Operating time phase 1, 2 and 3

**Only for parameters of Operating time III (three-phase)